Для влюбленных в программирование
Скидка до 44 000₽ на все профессии до 28.02
Главная | Все статьи | Код

Визуализация данных с Seaborn: лучшие практики для Python разработчиков

Аналитика Время чтения статьи ~5 минут
Визуализация данных с Seaborn: лучшие практики для Python разработчиков главное изображение

В памяти человека хранится около 10% данных, полученных из устной речи, и до 65% изображений. А еще исследователи Уортонской школы бизнеса доказали, что устной речью можно убедить 50% слушателей, а при использовании в презентации графиков этот показатель увеличивается до 67%. Вопрос визуализации данных не обошел стороной и разработчиков, работающих с Python, — инструмент Seaborn был создан именно для этого. Изучим его возможности!

Изучите базу языка Python бесплатно

Начать учиться

Что такое Seaborn?

Seaborn — библиотека для анализа данных и отображения сложных зависимостей с помощью графиков на языке Python. Программный пакет создан на базе библиотеки matplotlib, также Seaborn поддерживает интеграцию с библиотекой для работы с табличными данными -  pandas. Для автоматического преобразования данных в графики Seaborn использует семантические карты и функции статистической агрегации.

Интуитивно понятная структура Seaborn делает инструмент популярным как среди начинающих программистов, так и у профессионалов с многолетним опытом.

Новички могут использовать встроенные наборы данных для учебных целей и тестирования различных видов графиков. А продвинутым пользователям точно понравится возможность строить сложные графики с несколькими переменными для исследования больших массивов данных.

Возможности библиотеки Seaborn

Инструмент предоставляет Python разработчикам ряд уникальных возможностей для эффективной визуализации данных:

  • Удобный интерфейс для построения гистограмм, линейных графиков, скрипичных графиков, тепловых карт, столбиковых диаграмм и других типов графиков.
  • Ускорение визуализации за счет интеграции Seaborn с библиотекой pandas. Табличные данные фреймворка pandas передаются напрямую в функции построения графиков.
  • Широкие возможности для кастомизации. Набор встроенных тем и стилей для изменения дизайна включает масштабирование элементов и настройку цветовых палитр. Это помогает в работе над презентациями, бизнес-отчетами, публикациями и научными статьями. Оптимизация дизайна не требует дополнительных строк кода, как в случае библиотеки Matplotlib.
  • Готовые к использованию графики разного типа из Seaborn коллекции для визуализации распределений, корреляций, трендов и других результатов статистического анализа без погружения в математические детали.
  • Автоматическая группировка данных и создание сложных диаграмм с помощью встроенного механизма создания многослойных графиков.
  • Упрощенная визуализация многомерных связей в данных. Функции pairplot и heatmap исследуют парные отношения и корреляции между несколькими переменными в рамках глубокого анализа структуры данных.

Изучите базу языка Python бесплатно

Начать обучение

Установка Seaborn

Менеджер пакетов Python установит Seaborn и все необходимые зависимости — matplotlib, pandas, numpy и scipy с помощью команды pip install seaborn.

pip install seaborn

Для старта работы Seaborn стоит импортировать следующие модули:

import seaborn as sns

import pandas as pd

import numpy as np

import matplotlib

Для анализа и визуализации вы можете использовать собственные данные или выбрать один из встроенных датасетов Seaborn.

Визуализация с Seaborn: лучшие практики

  1. Выбирайте правильный тип графика для ваших данных.

Seaborn предоставляет широкий спектр типов графиков. Чаще всего пользователи применяют:

  • точечные диаграммы (scatter plots);

Точечная диаграмма: соотношение размера счета и чаевых

  • линейные графики (line plots);

Линейный график: изменение интенсивности сигнала во времени

  • гистограммы (histograms);

Гистограмма: длина лепестков ириса

  • коробчатые графики (box plots);

Коробчатый график: размер счета по дням недели

  • скрипичные графики (violin plots);

Скрипичный график: распределение сортов ириса по длине лепестка

  • тепловые карты (heatmaps);

Тепловые карты: корреляция между размером чаевых и общим счетом

  • парные графики (pair plots);

Парные графики: соотношение между длиной лепестков и шириной чашелистиков у ирисов

Каждый из них предназначен для анализа и отображения разных типов данных.

Начните изучать Python бесплатно

Записаться на курс

Эффективность представления результатов анализа значительно зависит от выбора правильного типа графика для ваших данных. Например, диаграмма рассеивания может больше подойти для визуализации взаимосвязи между двумя переменными, а гистограмма — для визуализации распределения одной переменной.

  • Эффективно используйте цвет.

Избегайте слишком большого количества цветов и ярких оттенков — это может затруднить восприятие. Выделите цветом важную информацию или группировки похожих данных.

  • Подписывайте оси и используйте понятные метки.

Название осей, метки и описательный заголовок помогут вашей аудитории лучше понять идею вашей визуализации.

  • Учитывайте степень подготовки вашей аудитории.

Если ваша аудитория не имеет технического бэкграунда, выражайтесь ясно и кратко, избегайте технического жаргона и четко объясняйте любые статистические концепции.

  • Используйте релевантный статистический анализ.

Seaborn предоставляет ряд статистических функций. Для анализа ваших данных выбирайте ту, которая наиболее соответствует вашим данным и теме исследования.

  • Используйте настройки визуализации.

Экспериментируйте со шрифтами, стилями и цветами, чтобы найти подходящий для наилучшего представления результатов вашего анализа.

В рамках курса «Python: визуализация данных» вы самостоятельно построите графики с помощью Seaborn и разработаете приложение с интерактивной визуализацией.

Больше интересного в нашем Telegram-канале
Картинка баннера
Похожие статьи